Step of Proof: order_split
12,41
postcript
pdf
Inference at
*
2
2
I
of proof for Lemma
order
split
:
1.
T
: Type
2.
R
:
T
T
3.
a
:
T
.
R
(
a
,
a
)
4.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
5.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
(
x
=
y
)
6.
x
,
y
:
T
. Dec(
x
=
y
)
7.
a
:
T
8.
b
:
T
9.
a
=
b
R
(
a
,
b
)
latex
by ((((Unfold `so_apply` 0)
CollapseTHEN (RWH (HypC 9) 0))
)
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
R
(
b
,
b
)
C
.
Definitions
P
&
Q
,
P
Q
,
P
Q
,
P
Q
,
x
(
s1
,
s2
)
,
Lemmas
iff
wf
,
rev
implies
wf
origin